Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings

نویسندگان

چکیده

In commercial buildings, about 40%-50% of the total electricity consumption is attributed to Heating, Ventilation, and Air Conditioning (HVAC) systems, which places an economic burden on building operators. this paper, we intend minimize energy cost HVAC system in a multi-zone with consideration random zone occupancy, thermal comfort, indoor air quality comfort. Due existence unknown dynamics models, parameter uncertainties (e.g., outdoor temperature, price, number occupants), spatially temporally coupled constraints associated temperature CO2 concentration, large discrete solution space, non-convex non-separable objective function, it very challenging achieve above aim. To end, minimization problem reformulated as Markov game. Then, control algorithm proposed solve game based multi-agent deep reinforcement learning attention mechanism. The does not require any prior knowledge uncertain parameters can operate without knowing models. Simulation results real-world traces show effectiveness, robustness scalability algorithm.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Agent Deep Reinforcement Learning

This work introduces a novel approach for solving reinforcement learning problems in multi-agent settings. We propose a state reformulation of multi-agent problems in R that allows the system state to be represented in an image-like fashion. We then apply deep reinforcement learning techniques with a convolution neural network as the Q-value function approximator to learn distributed multi-agen...

متن کامل

Federated Control with Hierarchical Multi-Agent Deep Reinforcement Learning

We present a framework combining hierarchical and multi-agent deep reinforcement learning approaches to solve coordination problems among a multitude of agents using a semi-decentralized model. The framework extends the multi-agent learning setup by introducing a meta-controller that guides the communication between agent pairs, enabling agents to focus on communicating with only one other agen...

متن کامل

Cooperative Multi-agent Control Using Deep Reinforcement Learning

This work considers the problem of learning cooperative policies in complex, partially observable domains without explicit communication. We extend three classes of single-agent deep reinforcement learning algorithms based on policy gradient, temporal-difference error, and actor-critic methods to cooperative multi-agent systems. We introduce a set of cooperative control tasks that includes task...

متن کامل

Lenient Multi-Agent Deep Reinforcement Learning

Much of the success of single agent deep reinforcement learning (DRL) in recent years can be attributed to the use of experience replay memories (ERM), which allow Deep Q-Networks (DQNs) to be trained efficiently through sampling stored state transitions. However, care is required when using ERMs for multi-agent deep reinforcement learning (MA-DRL), as stored transitions can become outdated bec...

متن کامل

Deep Reinforcement Learning for Event-Driven Multi-Agent Decision Processes

The incorporation of macro-actions (temporally extended actions) into multi-agent decision problems has the potential to address the curse of dimensionality associated with such decision problems. Since macro-actions last for stochastic durations, multiple agents executing decentralized policies in cooperative environments must act asynchronously. We present an algorithm that modifies Generaliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Smart Grid

سال: 2021

ISSN: ['1949-3053', '1949-3061']

DOI: https://doi.org/10.1109/tsg.2020.3011739